CHANGING EXTREME SEA LEVELS ALONG THE COAST OF MALAYSIA

Authors

  • Abd Muhaimin Amiruddin Faculty of Forestry and Environment, UNIVERSITI PUTRA MALAYSIA
  • Iszuanie Syafidza Che Ilias Institute for Mathematical Research, UNIVERSITI PUTRA MALAYSIA
  • Muhamad Kasturi Mohd Dallye Institute for Mathematical Research, UNIVERSITI PUTRA MALAYSIA
  • Latifah Abd Manaf Faculty of Forestry and Environment, UNIVERSITI PUTRA MALAYSIA
  • Khairul Nizam Mohamed Faculty of Forestry and Environment, UNIVERSITI PUTRA MALAYSIA

DOI:

https://doi.org/10.21837/pm.v21i30.1386

Keywords:

South China Sea, Malacca Strait, Extreme Sea-Level, Sea-Level Rise, Tides

Abstract

This study examined extreme sea level (ESL) variations along the Malaysian coast using hourly sea level data from 17 tide gauge stations. The maximum observed ESLs varied from 1.26 m at Bintulu to 2.92 m at Port Klang, with tides playing a significant role in ESLs, especially along the west coast of Peninsular Malaysia. The spatial variation of seasonal ESLs showed a higher maximum of non-tidal residuals (0.8-1.1 m) along the east coast of Peninsular Malaysia during the northeast monsoon. This can be mainly attributed to the influence of the monsoon wind. Moreover, significant increases in ESLs were observed at 14 stations, largely due to rises in mean sea level. The interannual variability of ESL could be associated with the El Niño-Southern Oscillation at most sites except the northeast coast of Peninsular Malaysia. Interestingly, the interannual variability of the non-tidal residuals could be linked to the monsoon at sites located on the west coast of Peninsular Malaysia and East Malaysia. These findings provide valuable insights to relevant authorities for coastal planning, especially regarding flood risk management and the formulation of effective mitigation strategies.

Downloads

Download data is not yet available.

References

Amin, I. A. M., & Hashim, H. S. (2014). Disaster risk reduction in Malaysia urban planning. Planning Malaysia, 12, 35–38. https://doi.org/10.21837/pm.v12i4.124 DOI: https://doi.org/10.21837/pm.v12i4.124

Amiruddin, A. M., Haigh, I. D., Tsimplis, M. N., Calafat, F. M., & Dangendorf, S. (2015). The seasonal cycle and variability of sea level in the South China Sea. Journal of Geophysical Research: Oceans, 120(8), 5490–5513. https://doi.org/https://doi.org/10.1002/2015JC010923 DOI: https://doi.org/10.1002/2015JC010923

Arns, A., Wahl, T., Haigh, I. D., Jensen, J., & Pattiaratchi, C. (2013). Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practise. Coastal Engineering, 81, 51–66. https://doi.org/10.1016/j.coastaleng.2013.07.003 DOI: https://doi.org/10.1016/j.coastaleng.2013.07.003

Bamston, A. G., Chelliah, M., & Goldenberg, S. B. (1997). Documentation of a highly ENSO‐related sst region in the equatorial pacific: Research note. Atmosphere-Ocean, 35(3), 367–383. https://doi.org/10.1080/07055900.1997.9649597 DOI: https://doi.org/10.1080/07055900.1997.9649597

Caldwell, P. C., Merrifield, M. A., & Thompson, P. R. (2015). Sea level measured by tide gauges from global oceans—The Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5. NOAA National Centers for Environmental Information, Dataset, doi:10.7289/V5V40S7W DOI: https://doi.org/10.7289/V5V40S7W

Chong, N. O., & Kamarudin, K. H. (2018). Disaster risk management in Malaysia: Issues and challenges from the perspective of agencies. Planning Malaysia, 16(1), 105–117. https://doi.org/10.21837/pmjournal.v16.i5.415 DOI: https://doi.org/10.21837/pm.v16i5.415

Coles, S., (2001). An Introduction to Statistical Modelling of Extreme Values. Springer. (207pp.). DOI: https://doi.org/10.1007/978-1-4471-3675-0

Feng, X., & Tsimplis, M. N. (2014), Sea level extremes at the coasts of China, Journal of Geophysical Research: Oceans, 119(3), 1593-1608, doi: http://dx.doi.org/10.1002/2013JC009607. DOI: https://doi.org/10.1002/2013JC009607

Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., et al. (2021). Ocean, Cryosphere and Sea Level Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., … van de Wal, R. S. W. (2019). Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. In Surveys in Geophysics (Vol. 40). https://doi.org/10.1007/s10712-019-09525-z DOI: https://doi.org/10.1007/s10712-019-09525-z

Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., … Woodworth, P. L. (2020). The Tides They Are A-Changin’: A Comprehensive Review of Past and Future Nonastronomical Changes in Tides, Their Driving Mechanisms, and Future Implications. Reviews of Geophysics, 58(1), 1–39. https://doi.org/10.1029/2018RG000636 DOI: https://doi.org/10.1029/2018RG000636

MIDA [Malaysian Investment Development Authority] (2021). Revitalising the Maritime Industry Through Blue Economy. MIDA e-Newsletter February 2021. Retrieved from https://www.mida.gov.my/e-newsletters/e-newsletters-years/2021/

Oppenheimer, M., B.C. Glavovic , J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad, R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. Sebesvari, (2019): Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]

Pawlowicz, R., Pawlowicz, R., Beardsley, R. C., Beardsley, R., Lentz, S., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Computers & Geosciences, 28(8), 929–937. Retrieved from http://www.ocgy.ubc.ca/~rich. DOI: https://doi.org/10.1016/S0098-3004(02)00013-4

Pham, D. T., Switzer, A. D., Huerta, G., Meltzner, A. J., Nguyen, H. M., & Hill, E. M. (2019). Spatiotemporal variations of extreme sea levels around the South China Sea: assessing the influence of tropical cyclones, monsoons and major climate modes. Natural Hazards, 98, 969-1001. https://doi.org/10.1007/s11069-019-03596-2 DOI: https://doi.org/10.1007/s11069-019-03596-2

PLANMalaysia, (2022). Rancangan Fizikal Zon Pesisiran Pantai Negara-2, Jilid 1 Strategi Pengurusan Persisiran Pantai Negara. Federal Department of Town and Country Planning (PLANMalaysia), Kuala Lumpur. https://www.planmalaysia.gov.my/index.php/en/rancangan-fizikal-zon-pesisiran-pantai-negara-2

Pickering, M. D., Wells, N. C., Horsburgh, K. J., & Green, J. A. M. (2012). The impact of future sea-level rise on the European Shelf tides. Continental Shelf Research, 35, 1–15. https://doi.org/10.1016/j.csr.2011.11.011 DOI: https://doi.org/10.1016/j.csr.2011.11.011

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360–363. https://doi.org/10.1038/43854 DOI: https://doi.org/10.1038/43854

Taherkhani, M., Vitousek, S., Barnard, P. L., Frazer, N., Anderson, T. R., & Fletcher, C. H. (2020). Sea-level rise exponentially increases coastal flood frequency. Scientific Reports, 10(1), 1–17. https://doi.org/10.1038/s41598-020-62188-4 DOI: https://doi.org/10.1038/s41598-020-62188-4

Talke, S. A., & Jay, D. A. (2020). Changing Tides: The Role of Natural and Anthropogenic Factors. Annual Review of Marine Science, 12, 121–151. https://doi.org/10.1146/annurev-marine-010419-010727 DOI: https://doi.org/10.1146/annurev-marine-010419-010727

UNCTAD (2021). Review of Maritime Transport 2021. UNCTAD: New York. Retrieved from https://unctad.org/publication/review-maritime-transport-2021

Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel, J., & Slangen, A. B. A. (2017). Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nature Communications, 8(May), 1–12. https://doi.org/10.1038/ncomms16075 DOI: https://doi.org/10.1038/ncomms16075

Wang, B., & Fan, Z. (1999). Choice of South Asian Summer Monsoon Indices. Bulletin of the American Meteorological Society, 80(4), 629–638. https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2

Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., … Merrifield, M. A. (2019). Forcing Factors Affecting Sea Level Changes at the Coast. Surveys in Geophysics (Vol. 40). https://doi.org/10.1007/s10712-019-09531-1 DOI: https://doi.org/10.1007/s10712-019-09531-1

Woodworth, P. L. (2022). Advances in the observation and understanding of changes in sea level and tides. Annals of the New York Academy of Sciences, 1516(1), 48–75. https://doi.org/10.1111/nyas.14851 DOI: https://doi.org/10.1111/nyas.14851

Zhang, H., & Sheng, J. (2015), Examination of extreme sea levels due to storm surges and tides over the northwest Pacific Ocean, Continental Shelf Research, 93(0), 81-97, doi: http://dx.doi.org/10.1016/j.csr.2014.12.001. DOI: https://doi.org/10.1016/j.csr.2014.12.001

Downloads

Published

2023-11-05

How to Cite

Amiruddin, A. M., Che Ilias, I. S., Mohd Dallye, M. K., Abd Manaf, L., & Mohamed, K. N. (2023). CHANGING EXTREME SEA LEVELS ALONG THE COAST OF MALAYSIA. PLANNING MALAYSIA, 21(30). https://doi.org/10.21837/pm.v21i30.1386

Most read articles by the same author(s)