

PLANNING MALAYSIA: Journal of the Malaysian Institute of Planners VOLUME 22 ISSUE 1 (2024), Page 321 – 333

IDENTIFYING BARRIERS TO WALKABILITY WITHIN THE HERITAGE CITY OF MYSORE, KARNATAKA, INDIA

Shubham Jaiswal¹, Aary Lobo²

¹Graduate School of Advanced Science and Engineering, HIROSHIMA UNIVERSITY, Hiroshima, Japan ²Manipal School of Architecture and Planning, MANIPAL ACADEMY OF HIGHER EDUCATION, Manipal, Karnataka

Abstract

Historically, streets have served a range of functions, primarily those associated with shopping and social interactions. However, in the 20th century, the street design became centred on traffic movement. It enhanced the space for automobiles, while public lives were marginalized to sidewalks, not to forget the problems faced by the street hawkers, quintessential to the Street scene in India. The historic core of Mysore, a metropolitan city in the Southern state of Karnataka in India, has had various attempts to enhance its mobility but has not had much success. The paper summarises a pilot study carried out on Asoka Road in the city of Mysore to investigate its walkability. A descriptive quantitative technique was adopted, in which a random sample of respondents who happened to walk down Asoka Street were given questionnaires and surveys to complete to collect data. The results revealed that the level of comfort of the street amounted to 51.8% and that the pedestrian path was quite uncomfortable.

Keywords: Walkability, Streets, Historic Core, Pedestrians

² Corresponding Author, Email: aary.pearl.lobo@gmail.com

INTRODUCTION

A high level of pedestrian activity is often associated with more sustainable urban form (Gehl, 2013),(Speck, 2013), robust local economies (Glaeser, 2012), better public health outcomes (Asah Nasrudin et al., 2018), (Rundle et al., 2007) and stronger social networks (Rogers et al., 2011). Pedestrian areas have been minimised to allow for better road opening (Mohd Isa et al., 2019). Growing evidence indicates that land use patterns in many countries do not facilitate the healthy development of human beings as well as that of the economy (Wang & Yang, 2019). Environmental elements, such as the weather and season, are mentioned by scholars as having an impact on travel behaviour and nonmotorized forms of transportation (Aboelata & Sodoudi, 2020).

Objectives

1. To analyse the pedestrian mobility pattern in a select street in the Planning District-1 (PD-1) in the city of Mysore. To calculate the Comfort Level of walking at the roadside in a selected street.

Walkability in Mysore: a brief background

Mysore, the second-most populous city in Karnataka, has a population of 0.983 million as per the 2011 Indian census and a projection of 1.65 million for 2021-(Census of India 2011 - Karnataka - Series 30, 2014) and is expected to grow rapidly. Mysore's physical and social infrastructure is under great pressure due to the city's expanding population and rising car ownership from 0.2 million in 2001 to 0.4 million in 2011 (Directorate of Urban Land Transport, n.d.).

LITERATURE REVIEW

How streets become walkable

Planning, transportation, the environment, and even the professions of health and wellness have all given attention to the issue of walkability. Traditionally, a person who is on foot is considered a pedestrian; but, more lately, people who use wheelchairs or additional devices have been included in this definition. The term "walkability" describes the actual physical setting in which people walk. It characterised the area made up of streets, buildings, and streetscape. When an area is conducive to walking, it is considered a pedestrian environment. According to (Speck, 2013), there are four key factors of the general Theory of Walkability'. More crucially, the book describes what makes a street "pedestrian friendly" and further detail what makes a city appealing to pedestrians. Walkability is broadly impacted by Accessibility, Pedestrian Surface Conditions and Cleanliness of the pathway. Walkability is essential to urban design since it benefits liveability, sustainability, and health on three different levels. Reducing transportation-based consumption and individualistic goals, such as the desire to own and operate a private vehicle, can be reconciled conceptually and practically

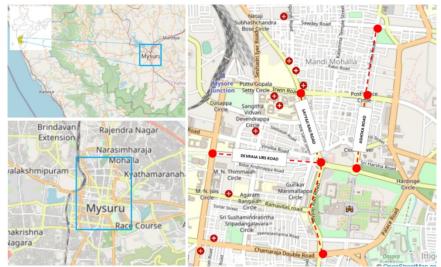
by embracing walkability as an urban solution. The following are important elements that help make pathways more walkable:

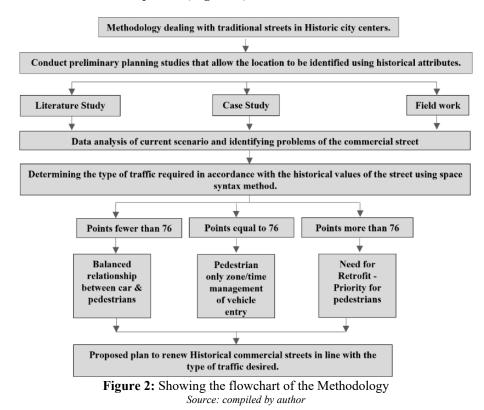
- a) Sidewalks: Having continuous, well-kept walkways on both sides of the road promotes pedestrian traffic.
- b) Crosswalks: At junctions, well defined crosswalks improve accessibility and pedestrian safety.
- c) Encouragement of mixed-use zoning within walking distance, cutting down on the need for lengthy automobile excursions.
- d) Benches, Shelters, and Lighting: Adding features like benches, shelters, and enough lighting improves pedestrian comfort and safety.
- e) Trash Containers: Having trash cans helps keep the area tidy and conducive to walking.
- f) Pedestrian Bulbs: Increasing sidewalk length at crosswalks can improve pedestrian safety and visibility.
- g) Integration of Public Transportation facilitates a smooth transition between walking and public transportation.

METHODOLOGY

Study area: Mysore Local Planning District 1 (PD-1)

Mysore's City centre covers an area of 300.15ha (Figure 1). Four satellite picture tiles are needed for obtaining the Site Plan using ArcGIS 10.2.2 environment. The four tiles have the row and path (76°38',12°19'), (76°39', 12°19'), (76°39', 12°18') and (76°38', 12°18') were Geo-referenced respectively.




Figure 1: Location of Mysore in the Indian State of Karnataka Source: Open Street Maps

MATERIALS & METHODS

The study developed a set of standards to evaluate the feasibility of turning former commercial routes into pedestrian areas, as indicated in **Table 6**. Then, this was implemented on a selected historic centre street. In addition to the five main criteria (street characteristics, traffic, commercial structure, environmental challenges, and community engagement), there are about 19 sub-criteria. Each component in this approach is assigned a grade based on how likely it is to influence the conversion of a commercial street into a pedestrian one.

- The items in the first category are those that require six points.
- Each element in the second category is worth four points.
- The items that require two points for each are represented by the third one.

In the case of Commercial Street, if the total evaluation result is greater than 76 points, the decision is to make the street a pedestrian-oriented street by utilising the toolkit and adding the weights. The street's potential does not meet the requirements to be designated as a pedestrian-only commercial street if the total score exceeds 76 points. (Figure 2).

PLANNING MALAYSIA Journal of the Malaysia Institute of Planners (2024)

Sampling and Sampling Procedures

Using Fisher's method, a judgmental sampling technique was used to determine the sample size of 96 pedestrians (age group limited to 15–59 years old) who were randomly questioned on Ashoka Street.

$$n = \frac{Z^2 P(1-P)}{I^2}$$

Where: n = Sample size [where population > 10,000]

Z = Normal deviation at the desired confidence interval. In this case, it will be taken at 95%

Z = Normal deviation at the desired confidence interval. In this case, it will be taken at 95%, Z value at 95% is 1.96.

P = Proportion of the population with the desired characteristic.

Q = Proportion of the population without the desired characteristic.

I = Degree of precision; will be taken to be 10%. Since the proportion of the population with the characteristic is not known, then 50% will be used i.e.

$$n = \frac{196^2 0.5(1 - 0.5)}{0.1^2} = 96$$

Class Intervals and Sidewalk Comfort Level Criteria

Many factors affect how pleasant walkers find the pedestrian path, including the degree of circulation and accessibility, the quality of the surface, the degree of cleanliness, the level of beauty, and the quantity of obstacles. To analyse the data obtained from respondents, the following steps were taken:

- a) Determine the respondent's score by multiplying the number of items, the number of respondents, and the maximum and minimum scores that result from multiplying the lowest and highest scores.
- b) The calculation of the respondent's score and the percentage of pedestrian comfort level was then arrived at.
- c) Class Intervals and Sidewalk Comfort Level Criteria were then arrived at as follows:

14	on I. Shaewark Connort L	
Score Intervals	Percentage Interval	Comfort Level Criteria
$7200 \le X \le 6048$	$84\% \le X < 100\%$	Very comfortable
$6048 \le X \le 4896$	$68\% \le X < 84\%$	Comfortable
4896≤ X <3744	$52\% \le X < 68\%$	Quite Comfortable
$3744 \le X \le 2592$	$36\% \le X < 52\%$	Uncomfortable
$2592 \le X \le 1440$	$20\% \le X < 36\%$	Very Uncomfortable
		Source: Author's calculations

Table 1: Sidewalk Comfort Level Criteria

The instruments employed in this investigation are a modification of the comfort factor that researchers (Hidayat et al., 2020) developed and modified.

Crite ria		Respo nse	Description and Role		
	Respondents' personal information	Open	Demographic characteristics		
	A1_Pedestrian paths can be accessed by all pedestrians, including those with special needs.	-	To determine the		
	A2 The pedestrian paths surface is in good condition	-	respondents		
Acces sibilit	A3_ The pedestrian paths are wide enough for walking	Likert Scale	understanding of the physical attributes of the street.		
y (A)	A4_The pedestrian path is interrupted with modal conflicts.	Scale			
	A5_There is a sufficient difference in the surface height of the pedestrian path and the traffic lane.				
	P1_ The walkway paving surfaces are broken				
Pedes	P2_Flowerpots / trash block the pedestrian path	_	To understand respondents		
trian	P3_Parking of vehicles block the pedestrian paths	- Likert			
Condi tions	P4_Pedestrian paths are not well connected to Sub- way Facility	Scale	awareness of activities along the street		
(PC)	P5_The Central Business District needs re- development.	-			
	C1_The surface of the pedestrian path is not slippery.	_	T 1 1		
C1	C2_The slope of the pedestrian path is quite gentle.	_	To understand		
Clean liness	C3 Pedestrian path is clean from trash	Likert	respondents' attitude on how		
(C)	C4_The surface of the pedestrian path is overgrown with shrubs.	Scale	attitude on how cleanliness may affect walkability		
	C5 Odorless environment	-			

Source: author

25 street vendors between December to February 2021 were subjected to convenience sampling between the hours of 8:00 to 9:00 a.m. and 6:00 to 7:00 p.m.

Criteria		Response	Description and Role
Hawking Experience	Would you prefer a designated space for hawking?	Likert	To understand hawkers' attitude towards
-	What is your opinion of pedestrianisation?	Scale	pedestrianisation

Source: Author

Statistical Analysis

The authors used Statistical Package for Social Scientists (SPSS) series 24 and Microsoft Excel tools to analyse data. The A numerical coding of the qualitative

responses was done for analysis and storage. Data analysis involved simple descriptive statistics such as frequency counts and percentages to summarize the data and inferential statistics such as Correlation and Regression Analysis.

RESULTS AND DISCUSSION

Validity Test

There are fifteen questions in the questionnaire, each of which represents three factors. The question item is deemed legitimate if the value of rcount > rtable, and vice versa. Given that n = 96 has a 5% significance level, the value of rtable is known to be 0.205.

 Table 4: Test of the Validity of Accessibility Instrument (A), Pedestrian Condition (PC) and Cleanliness (C) instruments.

		A 1	A2	A3	A4	A5	P1	P2	Р3	P4	P5	C1	C2	C3	C4	C5
A 1	Pears on Corre lation	1	.4 57 **	.4 85 **	.4 20 **	.3 82 **	.9 21 **	.4 64 **	.4 98 **	.4 08 **	.4 84 **	.5 37 **	.2 60 *	.2 70 **	.4 78 **	.5 38 **
A 2	Pears on Corre lation	.4 57 **	1	.6 84 **	.5 73 **	.3 83 **	.5 33 **	.9 94 **	.6 93 **	.4 98 **	.8 40 **	.5 42 **	.6 28 **	.3 98 **	.7 12 **	.6 52 **
A 3	Pears on Corre lation	.4 85 **	.6 84 **	1	.6 10 **	.4 19 **	.5 62 **	.6 73 **	.9 93 **	.5 32 **	.7 28 **	.6 67 **	.5 46 **	.4 71 **	.6 93 **	.7 11 **
A 4	Pears on Corre lation	.4 20 **	.5 73 **	.6 10 **	1	.4 64 **	.4 88 **	.5 75 **	.6 19 **	.9 20 **	.6 37 **	.6 43 **	.6 35 **	.5 39 **	.7 85 **	.5 58 **
A 5	Pears on Corre lation	.3 82 **	.3 83 **	.4 19 **	.4 64 **	1	.4 65 **	.3 92 **	.4 33 **	.4 17 **	.4 33 **	.5 36 **	.5 07 **	.6 01 **	.5 38 **	.4 61 **

Source: Author

Table 4 shows that the Pearson Correlation value for each question item in Accessibility (A), Pedestrian Condition (PC) and Cleanliness (C) variable instruments is greater than rtable=0.205. The overall significance value is less than 0.05. Hence, the question indicator of all accessibility variables has a valid construct.

Performance assessment-Reliability Test

A reliability test was conducted to measure the measuring instruments' consistency level. The results of the variable instrument reliability testing are presented in **Table 5**.

Shubham Jaiswal, Aary Lobo
Identifying Barriers to Walkability Within the Heritage City of Mysore, Karnataka, India

Variable	Ta No of items	Cron bach Alph a	Reli able Lim it	Information	KMO test	Signific ant level	Percentage of Variance Explained
Accessibil ity (A)	5	0.825	0.6	Acceptable level of Reliability	0.829	0.000	59.4%
Pedestrian Condition s (PC)	5	0.883	0.6	Acceptable level of Reliability	0.845	0.000	68.7%
Cleanlines s (C)	5	0.886	0.6	Acceptable Internal Consistency	0.846	0.000	68.8%

Source: author

The reliability test using Cronbach's Alpha for all variables is well above the acceptable level of 0.6. The results of KMO test for all variables are well beyond 0.5 and are deemed acceptable. All results from Bartlett's Test of Sphericity are significant, indicating the data's suitability for factor analysis.

FINDINGS AND ANALYSIS

Pilot study-Ashoka Road

The current streetscape is a thin section of 2183 m that ranges in width from 12 to 15 m (Figure 12). Buildings are arranged closely without any side setbacks. The proposed Toolkit in **Table 6** for guiding the decision-making process was applied to Ashoka Street as a pilot project. Summing the weights, the assessment of the street is more than 76 points; hence the decision is to turn the street into a pedestrian-oriented street.

Table 6: The Proposed Toolkit for Guiding the Decision-Making Process for Ashoka	a
Road (indicated by ✓)	

Criteria	Sub-Criteria	Number of points	per item	
		6	4	2
	Location	✓Historic Centre	City Centre	Beyond City Limits
Street	Width	≤10 m	✓Between 10 m and 15 m	≥15m
Characteri stics	Street Length	≤1.5 km	✓Between 1.5km & 3km	≥3 km
	Street scale	✓Friendly	Human	Unfriendly
	Accessibility	High	Average	✓Low
Traffic	Functional Continuity	Good	Acceptable	✓Low
	Vehicle Intensity	√High	Average	Low
	Pedestrian Intensity	√High	Average	Low
	Parking	✓Within 800m	≥800m	≥1500m

PLANNING MALAYSIA

Journal of the Malaysia Institute of Planners (2024)

Criteria	Sub-Criteria	Number of points	per item	
	Access	√Hard	Average	Easy
	Car-pedestrian relationship	✓Conflicted	Balanced	No conflict
	Car absorption in parallel streets	√Low	Average	High
Commerci al structure	Type of shop	✓ Suitable for pedestrian streets	Some pedestrian needs	Fewer than 4 activities
	Diversity of activities	√ High (≥10)	Between 4 and 10	< 4 activities
Environm ental	Street orientation	Favourable Wind	√Average	Bad
factors	Street shading	🗸 Not available	Can be solved	Can be solved
	Ventilation	√Bad	Average	Good
Communi ty participati	Hawker's opinion on pedestrianisati	An approval rate of 60-100%	An approval rate of 50- 59% 52% < X < 68%	Less than a 50% approval rate
on	on Pedestrian Satisfaction	✓36% ≤ X < 52%	$3270 \ge \Lambda \ge 08\%$	$68\% \le X < 84\%$
Total point	s of street	90 points		

Source: compiled by author

Analysis of Pedestrian Comfort Level on Asoka Road

The overall comfort level of the pedestrian path is obtained as follows (Hidayat et al., 2020):

Percentage of pedestrian comfort level =

Total Score of Respondents × 100% Total Maximum score

= 51.8%

Overall, 51.8% respondents agree that the pedestrian path on Ashoka Street is uncomfortable, as can be seen in the **Table 1**.

RESULTS AND DISCUSSION

Table 7 Presents a summary of the social demographic of the study respondents. Most of the respondents were female, with 49% and 47% male. Most of those interviewed were between the age of 15 and 24 years.

 \bigcirc 2024 by MIP

Gende	Frequen	Percen	Age	Freque	Percenta	Education	Frequ	Perce
r	cv	tage	Group	ncy	ge		ency	age
Fema	47	49.0	>55	7	7.3	Pre-	13	13.5
le	17	12.0	15 - 24	48	50.0	University		
Male	45	46.9	25 - 34	28	29.2	College		
Prefer	4	4.2	35 - 44	9	9.4	Primary	4	4.2
not to	т	7.2	45-54	4	4.2	Secondary	2	2.1
say			тЈ-Јт	7	7.2	University	77	80.2
Total	96	100.0	Total	96	100.0	Total	96	100.0
1 otai		10000	Source: a	compiled b	y author			

 Table 7: Social Demographics

Accessibility

38.5% respondents felt that Pedestrian paths couldn't be accessed by all pedestrians (A1) while 39.6% disagreed that paths were in good condition (A2).

Table 8: Frequency Counts for A1and A2

A1	Frequency	Percent		A2	Frequency	Percen
1	13	13.5		1	9	9.4
2	37	38.5	. –	2	38	39.6
3	36	37.5	. –	3	34	35.4
1	50	6.3	. –	4	12	12.5
-	0	0.3	. –	5	3	3.1
Total		100.0		Total	96	100.0
Total	90		ilad by Author			

Source: Compiled by Author

Cleanliness

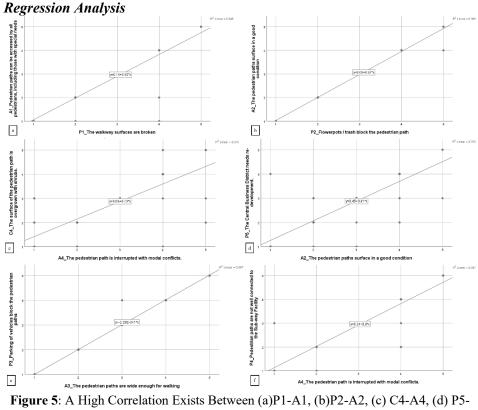

43.8% of respondents said that there was rubbish on the pedestrian pathways. (C3) while 40.6% respondents disagreed with the path being overgrown with shrubs (C4). Accessibility has been negatively impacted as demonstrated in **Figure 5**(a).

 Table 9:
 Frequency Counts for C4 and C3

C4	Frequency	Percent		C3	Frequency	Percent
1	6	6.3		1	6	6.3
2	39	40.6		2	42	43.8
3	38	39.6		3	36	37.5
4	9	9.4		4	9	9.4
5	4	4.2		5	3	3.1
Total	96	100.0	Т	otal	96	100.0

Source: Compiled by Author

PLANNING MALAYSIA Journal of the Malaysia Institute of Planners (2024)

A2, (e) P3-A3 and (f)P4-A4. Source: compiled by author

The regression analysis in **Figure 5** yields a relatively high R-squared of 0.6 and above, indicating that the independent variable (Accessibility) and dependent variables (Pedestrian Conditions and Cleanliness) confirm their strong influence on each other. This means that:

- a) The Accessibility of Ashoka Street correlates positively to the paving surfaces of the pathways ($R^2=0.848$) given by the equation y=0.14+0.92*x.
- b) The Pedestrian path surface condition was highly influenced by the placement of obstructions/trash cans ($R^2=0.989$) given by the equation y=0.06+0.97*x.
- c) The Pedestrian path surface overgrown with shrubs positively correlates positively to modal conflicts ($R^2 = 0.616$) given by the equation y=0.69+0.73*x.
- d) The Pedestrian path surfaces correlates positively to the development of the Central Business District ($R^2=0.705$) given by the equation y=0.45+0.81*x.

 $\ensuremath{\mathbb{C}}$ 2024 by MIP

- e) The pedestrian surface walkway width was influenced by the on-street parking $(R^2=0.987)$ having a negative correlation given by y=-2.5E-3+1*x.
- f) The lack of Subway connectivity has a positive correlation to the modal conflict on the pathway ($R^2=0.847$), given by the equation y=0.24+0.9*x.

CONCLUSIONS

Based on a study of 96 respondents' data, Ashoka Street had a 51.8% total level of discomfort. This is corroborated by the absence of numerous metrics, including the degree of accessibility and circulation, the surface's state, the degree of cleanliness, and the degree of obstructions to pedestrian paths. The study concludes that restoring the pavement's functionality is essential to raising people's comfort levels.

REFERENCES

- Aboelata, A., & Sodoudi, S. (2020). Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built-up areas in Cairo. *Building and Environment*, 168, 106490. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106490
- Ponrahono, Z., Mohd Isa, N., Aris, A. Z., & Harun, R. (2019). The Traffic Volume and Level of Service (LOS) of Universiti Putra Malaysia (UPM) Serdang Campus Main Access. *Planning Malaysia*, 17(10). https://doi.org/10.21837/pm.v17i10.628
- Census of India 2011 Karnataka Series 30. (2014). Census of India 2011 Karnataka Series 30 Part XII B District Census Handbook, Mysore.
- Directorate of Urban Land Transport. (n.d.). *Comprehensive Traffic and Transportation Plan –Mysore, Karnataka, India.* Retrieved April 4, 2023, from https://dult.karnataka.gov.in/uploads/media_to_upload1643374573.pdf
- Gehl, J. (2013). Cities for people. Island press.
- Glaeser, E. (2012). Triumph of the city: How our greatest invention makes us richer, smarter, greener, healthier, and happier. Penguin. https://doi.org/10.2307/41474071
- Hidayat, I., Hidayat, B., & Ophiyandri, T. (2020). PENENTUAN PRIORITAS PEMELIHARAAN JALAN STUDI KASUS KOTA PAYAKUMBUH PROVINSI SUMATERA BARAT. *Rang Teknik Journal*, 3(2), 186–194. https://doi.org/10.31869/rtj.v3i2.1776
- Abd Rahim, S. A., Ismail, N. H., & Abd Latip, N. S. (2022). Analysis of current condition of heritage masjid in Negeri Sembilan. *Planning Malaysia*, 20(21). https://doi.org/10.21837/pm.v20i21.1102
- Rogers, S. H., Halstead, J. M., Gardner, K. H., & Carlson, C. H. (2011). Examining Walkability and Social Capital as Indicators of Quality of Life at the Municipal and Neighbourhood Scales. *Applied Research in Quality of Life*, 6(2), 201–213. https://doi.org/10.1007/s11482-010-9132-4
- Rundle, A., Roux, A. V. D., Freeman, L. M., Miller, D., Neckerman, K. M., & Weiss, C.C. (2007). The Urban Built Environment and Obesity in New York City: A

PLANNING MALAYSIA Journal of the Malaysia Institute of Planners (2024)

Multilevel Analysis. *American Journal of Health Promotion*, 21(4_suppl), 326–334. https://doi.org/10.4278/0890-1171-21.4s.326

- Speck, J. (2013). Walkable city: How downtown can save America, one step at a time. https://doi.org/10.5565/rev/dag.274
- Wang, H., & Yang, Y. (2019). Neighbourhood walkability: A review and bibliometric analysis. *Cities*, *93*, 43–61. https://doi.org/https://doi.org/10.1016/j.cities.2019.04.015

Received: 30th Nov 2023. Accepted: 23rd Jan 2024